

nova106: Функциональная плата с цифровыми входами (DI)

Эта функциональная плата позволяет получать информацию с 16 цифровых входов и (в модели F101) отображать их состояние с помощью светодиодов.

Напряжение считывания подается от платы процессора и питания в каркасе АС, и соответствует регулировкам, касающимся защитного напряжения низкого уровня. К входам можно подсоединить «сухие» контакты, оптопары или транзисторы. 16 входов можно разделить на группы по восемь (2×8 бит) или по четыре (4×4 бит), или в виде сочетания (8 бит +2×4 бит). Для каждого входа можно выбрать цвет светодиода (красный/зеленый), означающий закрытые или открытые контакты.

Применение: для управления контактами (авария/статус) или сигналами обратной связи от команд переключения.

Тип	Опис	Вес, [г]	
EYS 110 F001	<mark>Ілата с цифровым входо</mark> м	230	
EYS 110 F101	Iлата с цифровым входом	со светодиодами	240
Техническое описание		Допуск. темп. окр. среды	
Количество входов	16	Нормальный режим работы	045 °C
Тип входов	«сухие» контакты (относительно земли)	Темп. при хран. и транспорт. Условия окружающей среды:	–2570 °C
	оптопара	Влажность	1090 %отн.вл.
	транзистор (открытый коллектор)		без конденсата
Макс. ток на			
входе	1.3 мА относительно земли	Электросхема	A05964
Макс. сопр-ие на входе	1 k Ω (включая кабель)	Инструкции по монтажу	MV 505535
Защита от		Соответствие:	
перенапряжения	до 24 В перемен./постоян. ток	ЕМС директива 89/336/ЕЕС	EN 61000-6-1/
Источник питания	от каркаса АС		EN 61000-6-2
Макс. ток			EN 61000-6-3/
EYS 110 F001	17 мА		EN 61000-6-4
EYS 110 F101	160 мА (все светодиоды вкл.)		
Потери мощности, макс.	прибл. 2 Вт		

Технические примечания

Плата обрабатывает 16 групп цифровой информации. Контролируемый вход подключается между заземлением и одной из входных клемм. На клемму подается напряжение, примерно, 24 В. Открытые контакты означают, что бит=0. Закрытые –бит=1, когда напряжения нет, а ток равен примерно 1 мА. Плата опрашивается каждые 150 мсек при изменении статуса; непродолжительные (30 мсек) изменения на входе между опросами хранятся в буфере платы и обрабатываются при следующем опросе.

С помощью программных средств САПР можно выбрать способ обработки функций:-

Для каждого точного машинного адреса (MFA) предназначено по восемь входов (8 бит). Каждой функциональной плате присваивается по 2 MFA. Поэтому плату лучше вставлять в гнезда 8 и 9. Функция эквивалентна 2×8 сигналам аварии/статуса или 2×1 функциям FWC (c A, I, L, II, III, IV, V, VI).

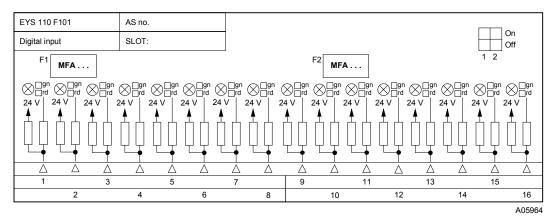
Если обрабатываются 4×1 функций FWC (c A, I, L, II), то требуется четыре MFA, и плата должна быть вставлена в одно из 1-7 гнезд. Четыре MFA также требуются и в случае комбинации функций ($1\times8+2\times4$), тогда используются только гнезда 1-7.

С помощью программного обеспечения САПР устанавливается тип опрашиваемых контактов и цвет (красный/зеленый) загорающегося светодиода.

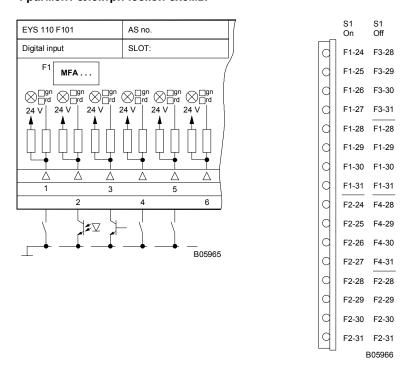
Нормально закрытые контакты (NC) используются для аварийных сигналов. Если контакты включаются с помощью реле/контактора, то тогда используются нормально открытые контакты (они открываются в случае неисправности). Это позволяет обнаружить отключение реле/контактора (в случае сбоя питания), неисправность контактов или разрыв между клеммой и контактами статуса. При отображении статуса, 'ВКЛ' обозначает закрытые контакты, а 'ВЫКЛ' – открытые (при применении реле/контактора с нормально открытыми контактами).

Красный цвет светодиода используется для аварийных сигналов, а зеленый – для обозначения статуса (в соответствии со стандартом EN 60204).

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40


Саратов (845)249-38-78

Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93


Смоленск (4812)29-41-54

Сочи (862)225-72-31

Электросхема

Фрагмент электрической схемы

Взаимоотношение между светодиодами, клеммами и битами на плате с цифровым входом EYS 110 F101

Если за приоритет берется функция аварии/статуса, а затем подбираются соответствующие клеммы и биты, то двоичная обратная связь становится неопределенной. Но если плата будет использоваться, главным образом, как плата аварии/статуса, то такое положение вполне приемлемо.

Sauter Systems 7 192610 003 K10

В случае функции аварии/статуса подгонка клемм и светодиодов достигается с высоким приоритетом.

Клемма	Свето-	Функция	Бит	Авар./Ста-	Обр.св.	Функция	Бит	Обр.св.
	диод			тус 2×8	2×8			4×4
1	1	F1-1	24	0/1	III	F3-5	28	Α
2	2	F1-2	25	0/1	IV	F3-6	29	II
3	3	F1-3	26	0/1	VI	F3-7	30	OE
4	4	F1-4	27	0/1	V	F3-8	31	I
5	5	F1-5	28	0/1	Α	F1-5	28	Α
6	6	F1-6	29	0/1	II	F1-6	29	II
7	7	F1-7	30	0/1	OE	F1-7	30	OE
8	8	F1-8	31	0/1		F1-8	31	1
9	9	F2-1	24	0/1	III	F4-5	28	Α
10	10	F2-2	25	0/1	IV	F4-6	29	II
11	11	F2-3	26	0/1	VI	F4-7	30	OE
12	12	F2-4	27	0/1	V	F4-8	31	I
13	13	F2-5	28	0/1	Α	F2-5	28	Α
14	14	F2-6	29	0/1	II	F2-6	29	II
15	15	F2-7	30	0/1	OE	F2-7	30	OE
16	16	F2-8	31	0/1	I	F2-8	31	- 1

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40

Саратов (845)249-38-78

Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Смоленск (4812)29-41-54

Единый адрес для всех регионов: sxr@nt-rt.ru || www.sauter.nt-rt.ru